
Jiachen Lu1, Renyuan Peng1, Xinyue Cai3, Hang Xu3, Hongyang Li2, Feng Wen3, Wei Zhang3, Li Zhang1
1Fudan University    2Shanghai AI Lab 3Huawei Noah’s Ark Lab

High-definition Road Network Topology contains:
1. Euclidean data: locations of landmarks and shapes of curves.
2. Non-Euclidean data: road topology.

Euclidean and Non-Euclidean Data for Road Network

Semi-Autoregressive RoadNet Sequence

Results on the nuScenes validation set

Qualitative results on nuScenes dataset

Translating Images to Road Network: 
A Non-Autoregressive Sequence-to-Sequence Approach
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We introduce a Euclidean-nonEuclidean unified representation RoadNet
Sequence with merits of losslessness, efficiency and interaction.
1. Losslessness: ensured by establishing a bijection from road network to
RoadNet Sequence.

2. Efficiency: achieved by limiting RoadNet Sequence length to the shortest
𝒪(𝐸) through a specially designed topological sorting rule.

3. Interaction: reveals the interdependence between Euclidean and non-
Euclidean information within a single sequence.
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Auto-Regressive RoadNetTransformer:We apply the encoder-decoder architecture.
1. Encoder is responsible for extracting BEV feature from multiple onboard cameras
such as Lift-Splat-Shoot.

2. Decoder includes a self-attention layer, a cross-attention layer and a MLP layer.

To parallelize the RoadNet Sequence, we have the following observations:
1. The locations of certain road points (start, fork or merge points) can be
independent of previous vertices and instead depend solely on the BEV feature

2. Except for locations of these road points, other tokens are still auto-regressive.
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Semi-autoregressive RoadNetTransformer can be divided into three parts: (i) Ego-
car Feature Encoder, (ii) Key-point Transformer Decoder, (iii) Parallel-Seq
Transformer Decoder.
1. Key-point Transformer Decoder is a parallel Transformer decoder, which predict
locations of key points based on set prediction.

2. Parallel-Seq Transformer Decoder is proposed for solving mixture of auto-
regressive and non-autoregressive problem.
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We propose a fully non-autoregressive generation model by utilizing a masked
language modeling strategy that involves masking a high percentage of the input
ground-truth sequence. During inference, with each iteration, the results will be
gradually refined.

Methods
Landmark Reachability

FPS
L-P L-R L-F R-P R-R R-F

NAR-RNTR (ResNet) 57.1 42.7 48.9 63.7 45.2 52.8 5.5
AR-RNTR    (VovNet) 62.6 47.9 54.3 73.2 52.9 61.4 0.1 (1.0×)
SAR-RNTR  (VovNet) 66.0 55.9 60.5 74.5 61.1 67.1 0.6 (6.0×)
NAR-RNTR  (VovNet) 65.6 55.7 60.2 73.4 60.0 66.0 4.7 (47×)
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