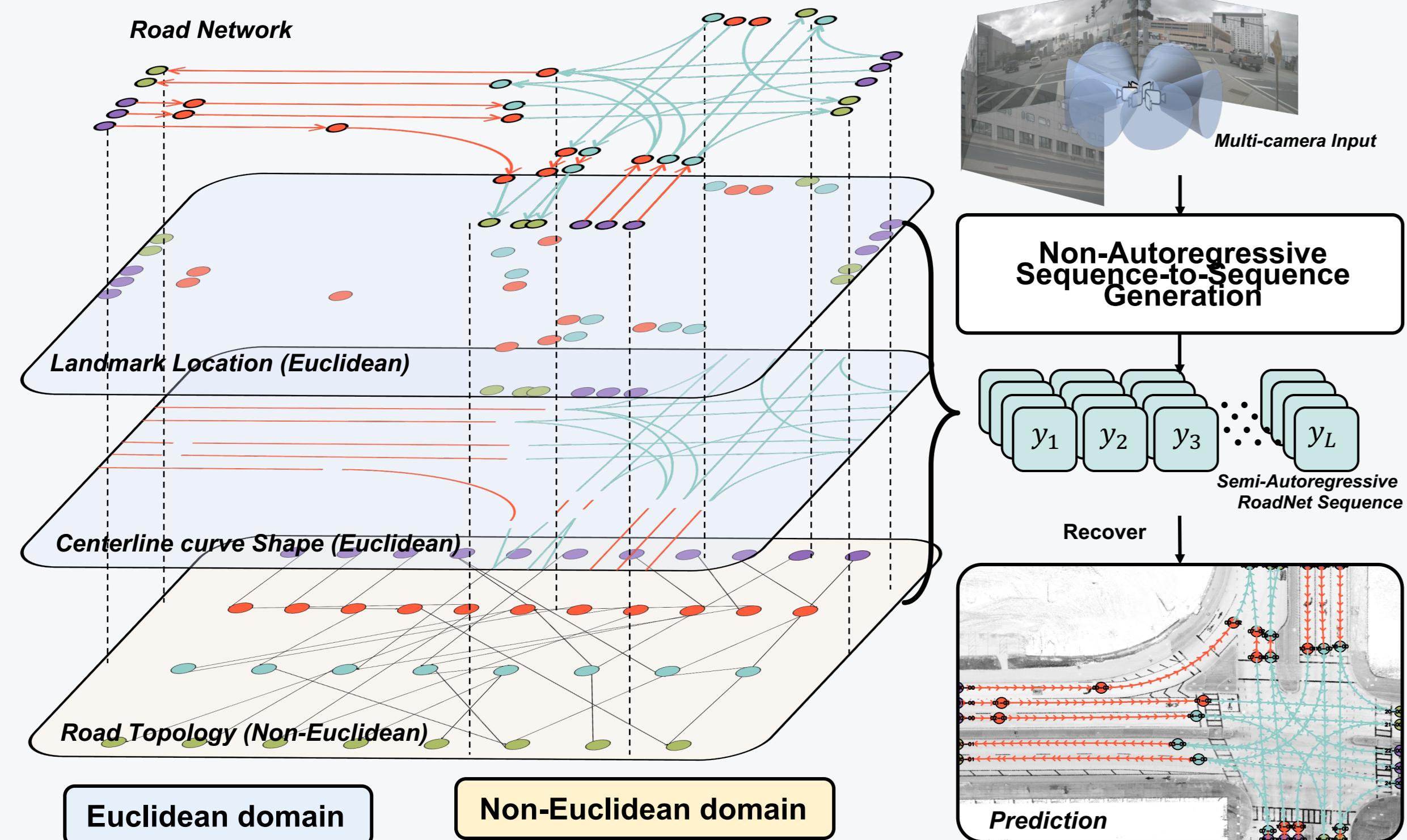


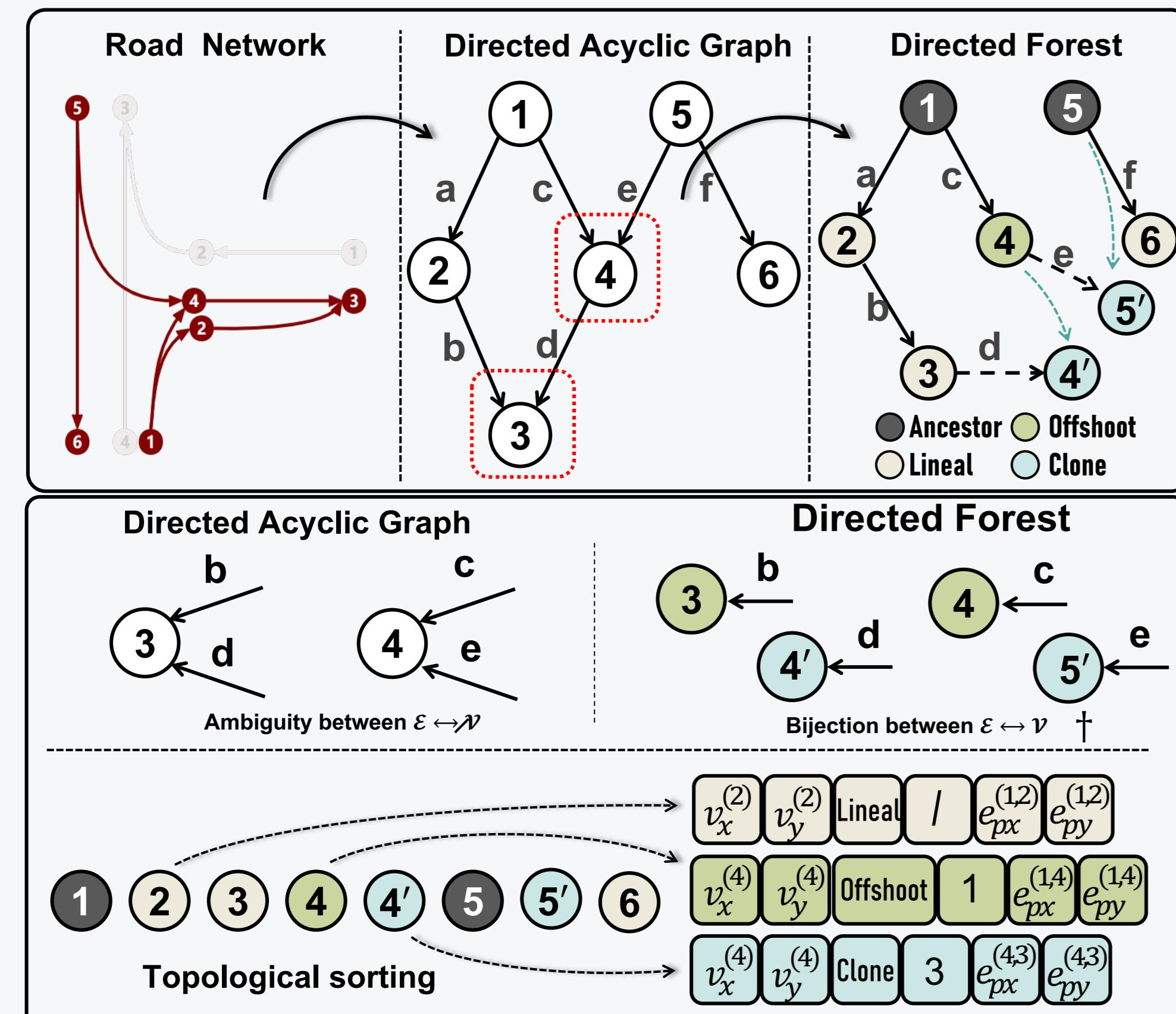
Euclidean and Non-Euclidean Data for Road Network



High-definition Road Network Topology contains:

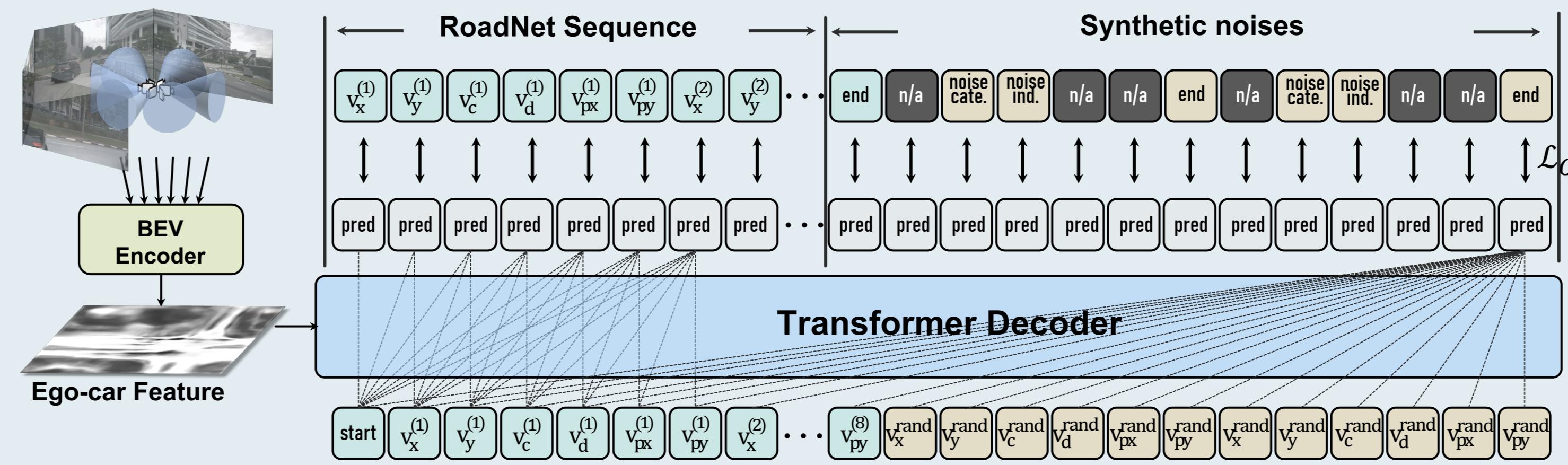
1. **Euclidean data**: locations of landmarks and shapes of curves.
2. **Non-Euclidean data**: road topology.

RoadNet Sequence



We introduce a Euclidean-nonEuclidean unified representation **RoadNet Sequence** with merits of **losslessness**, **efficiency** and **interaction**.

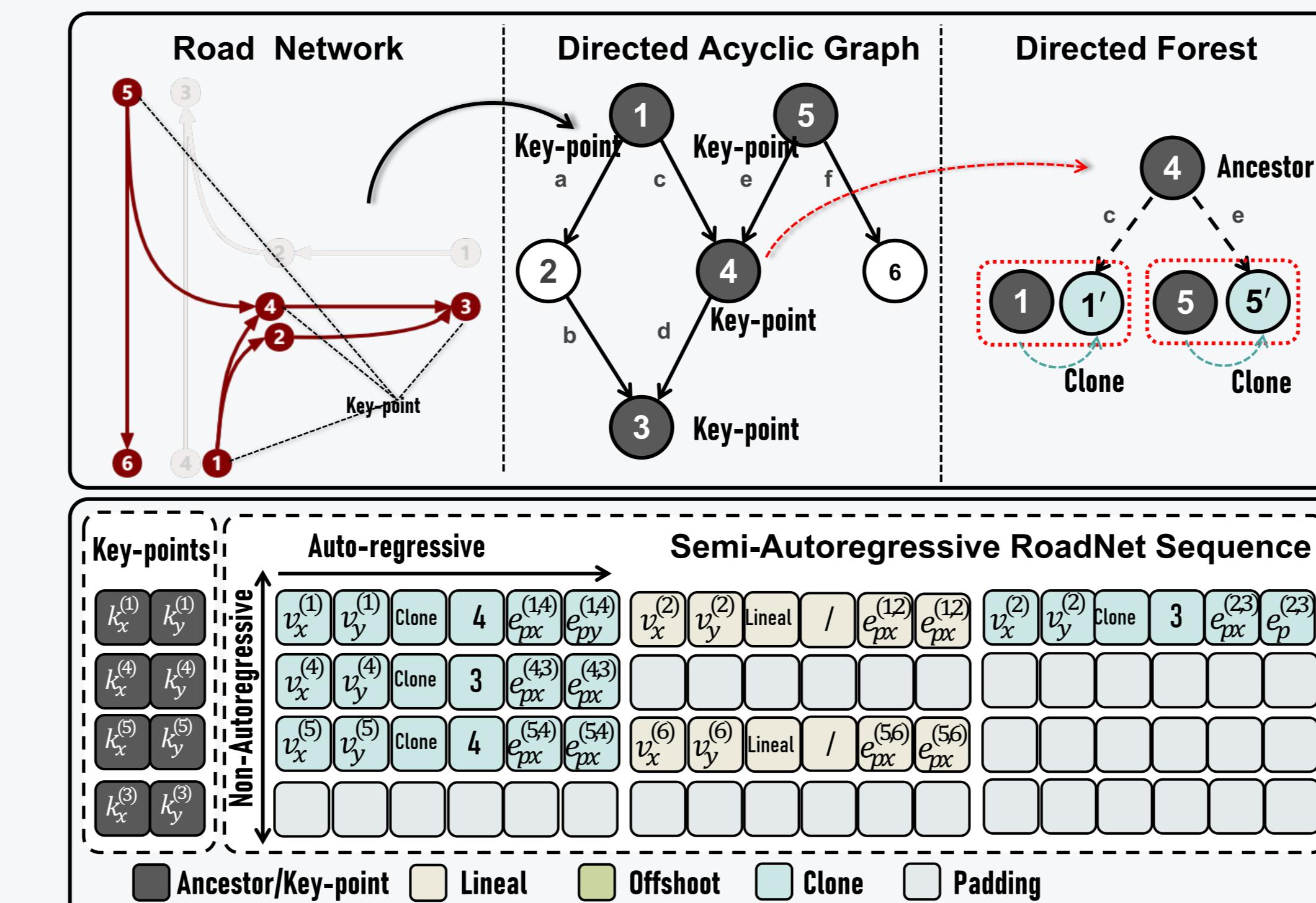
1. **Losslessness**: ensured by establishing a **bijection** from road network to RoadNet Sequence.
2. **Efficiency**: achieved by limiting RoadNet Sequence length to the shortest $O(E)$ through a specially designed topological sorting rule.
3. **Interaction**: reveals the interdependence between Euclidean and non-Euclidean information within a single sequence.



Auto-Regressive RoadNetTransformer: We apply the encoder-decoder architecture.

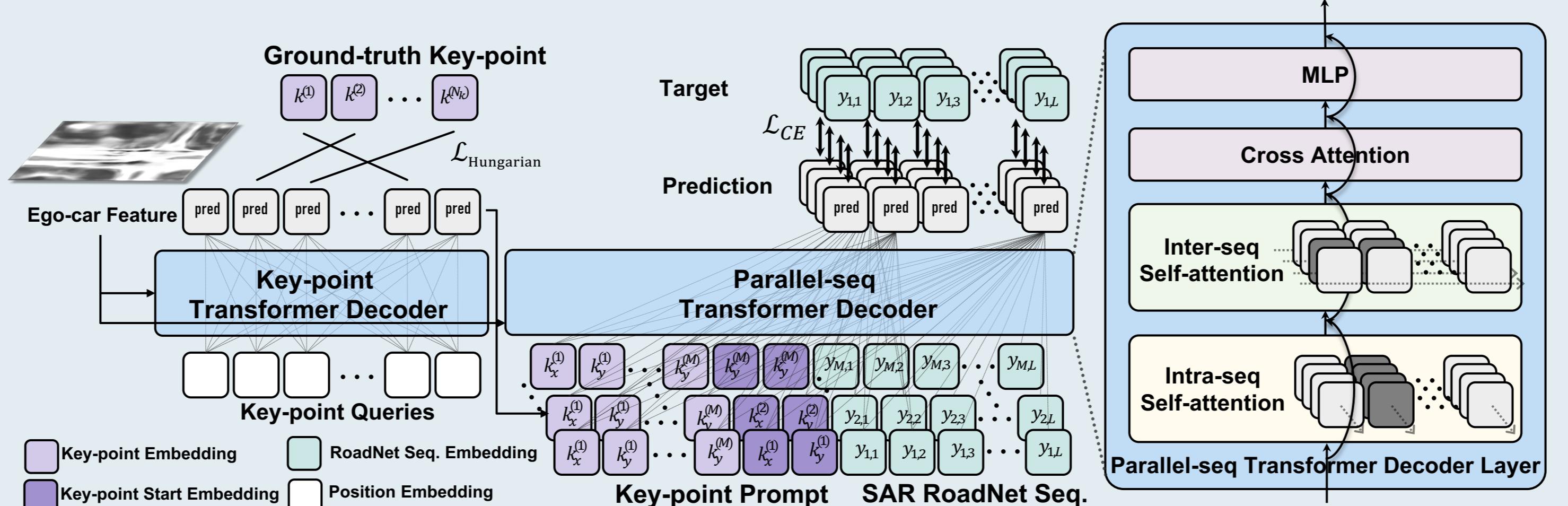
1. **Encoder** is responsible for extracting BEV feature from multiple onboard cameras such as Lift-Splat-Shoot.
2. **Decoder** includes a self-attention layer, a cross-attention layer and a MLP layer.

Semi-Autoregressive RoadNet Sequence



To parallelize the RoadNet Sequence, we have the following observations:

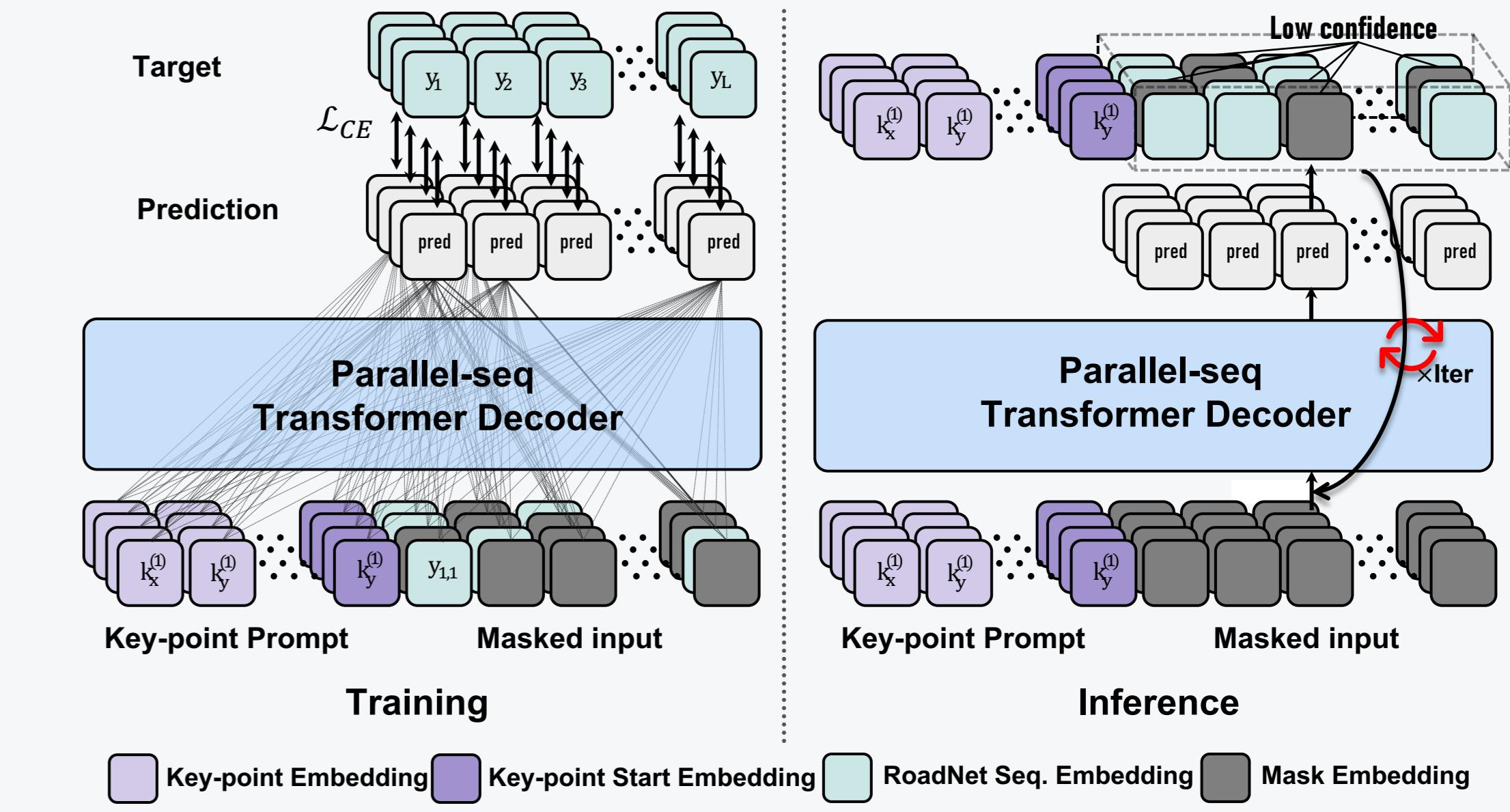
1. The locations of certain road points (start, fork or merge points) can be **independent** of previous vertices and instead depend solely on the BEV feature
2. Except for locations of these road points, other tokens are still **auto-regressive**.



Semi-autoregressive RoadNetTransformer can be divided into three parts: (i) Ego-car Feature Encoder, (ii) Key-point Transformer Decoder, (iii) Parallel-Seq Transformer Decoder.

1. **Key-point Transformer Decoder** is a parallel Transformer decoder, which predict locations of key points based on set prediction.
2. **Parallel-Seq Transformer Decoder** is proposed for solving mixture of auto-regressive and non-autoregressive problem.

Non-Autoregressive RoadNetTransformer



We propose a fully non-autoregressive generation model by utilizing a masked language modeling strategy that involves masking a high percentage of the input ground-truth sequence. During inference, with each iteration, the results will be gradually refined.

Results on the nuScenes validation set

Methods	Landmark			Reachability			FPS
	L-P	L-R	L-F	R-P	R-R	R-F	
NAR-RNTR (ResNet)	57.1	42.7	48.9	63.7	45.2	52.8	5.5
AR-RNTR (VovNet)	62.6	47.9	54.3	73.2	52.9	61.4	0.1 (1.0x)
SAR-RNTR (VovNet)	66.0	55.9	60.5	74.5	61.1	67.1	0.6 (6.0x)
NAR-RNTR (VovNet)	65.6	55.7	60.2	73.4	60.0	66.0	4.7 (47x)

Qualitative results on nuScenes dataset

