

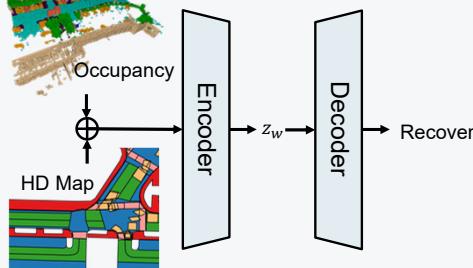
# WoVoGen: World Volume-aware Diffusion for Controllable Multi-camera Driving Scene Generation

Jiachen Lu<sup>1</sup>, Ze Huang<sup>1</sup>, Zeyu Yang<sup>1</sup>, Jiahui Zhang<sup>1</sup>, Li Zhang<sup>1</sup>

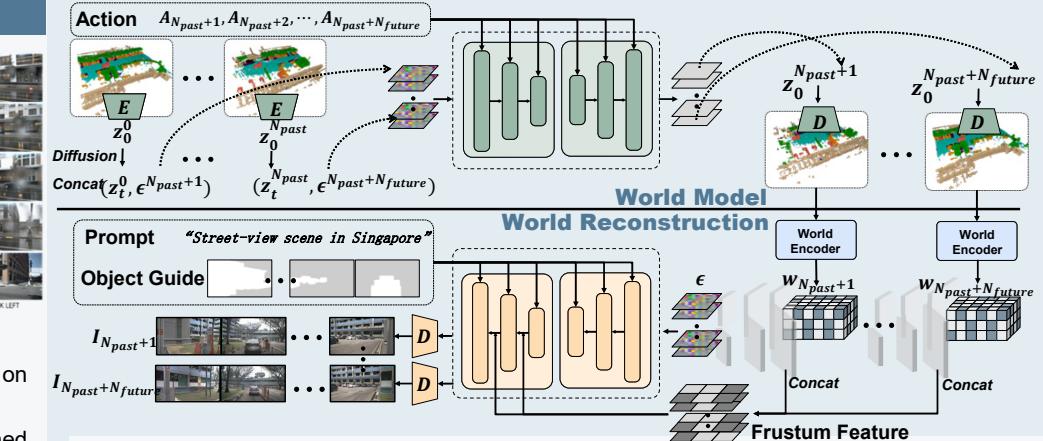
<sup>1</sup>Fudan University



## Multi-camera driving scene generation




Our model operates in two distinct phases:


1. Envisioning the future 4D temporal world volume based on vehicle control sequences
2. Generating multi-camera videos, informed by this envisioned 4D temporal world volume and sensor interconnectivity

## World model branch

The world model branch is responsible for generating future world volumes, incorporating action inputs and several initial frames of the world volume to inform its predictions.



$$\begin{aligned}
 z_w &= \text{rearrange}(z_w, \langle b \ n \rangle \ h \ w \ c \rightarrow \langle b \ n \rangle \ \langle h \ w \rangle \ c) \\
 z_w &= \text{MHSA}(\text{Norm}(z_w)) + z_w \\
 z_w &= \text{rearrange}(z_w, \langle b \ n \rangle \ \langle h \ w \rangle \ c \rightarrow \langle b \ h \ w \rangle \ n \ c) \\
 z_w &= \text{MHSA}(\text{Norm}(z_w)) + z_w \\
 z_w &= \text{rearrange}(z_w, \langle b \ h \ w \rangle \ n \ c \rightarrow \langle b \ n \rangle \ \langle h \ w \rangle \ c) \\
 z_w &= \text{MHCA}(\text{Norm}(z_w, A)) + z_w \\
 z_w &= \text{FFN}(\text{Norm}(z_w)) + z_w
 \end{aligned}$$



## Overall framework

WoVoGen comprises 2 branches: **the world model branch** and **the world volume-aware generation branch**. The world model branch is responsible for generating future world volumes, while the world volume-aware generation branch focuses on the generation of multi-camera video.

**Top: world model branch.** We finetune the AutoencoderKL and train the 4D diffusion model from scratch to generate future world volumes based on past world volumes and the actions of the ego car.  $\mathcal{F}_w$  are derived through the world encoder.

## World volume-aware 2D feature

1. **World volume encoding:** we employ a featurization process utilizing CLIP.

$$\mathcal{F}_w = \text{SPConv}(\text{PCA}(\text{CLIP}(\mathcal{W})))$$

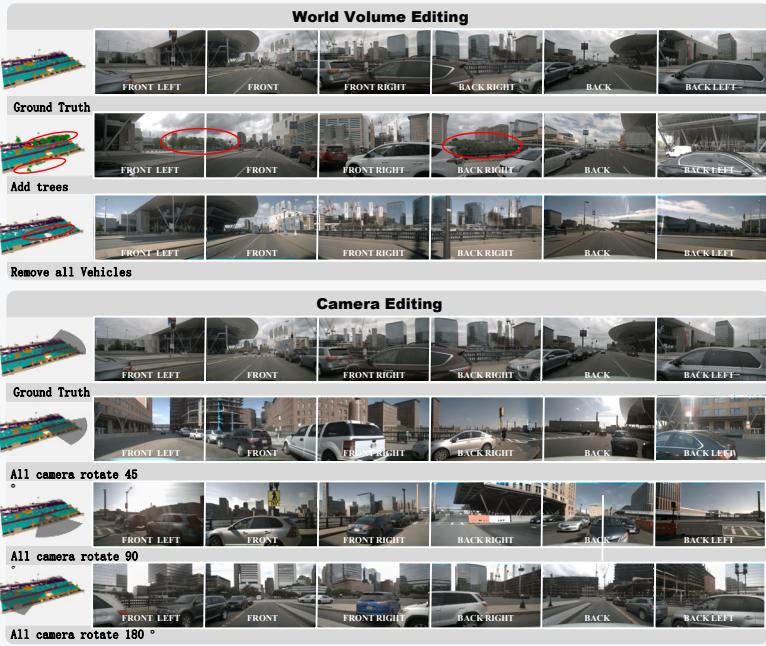
2. **Camera volume sampling:** to incorporate the world volume into image generation, we sample from it using dense rays emitted from the camera.

$$\mathcal{F}_{cam} = \text{interpolate}(p_c, \mathcal{F}_w)$$

3. **Squeeze-and-excitation operation:** We apply a squeeze-and-excitation operation on the depth channel and sum along the depth to obtain the world volume-aware 2D image feature:

$$\mathcal{F}_{img} = \sum_{i=1}^{D_c} SE(\mathcal{F}_{cam})[:, :, :, i, :, :]$$

## World volume-aware diffusion generation


- **Panoptic diffusion:** we aggregate the world volume-aware 2D image feature from different view into a single panoptic feature

$$\mathcal{F}_{pano} = \begin{bmatrix} \mathcal{F}_{img}^{front \ left} & \mathcal{F}_{img}^{front} & \mathcal{F}_{img}^{front \ right} \\ \mathcal{F}_{img}^{back \ right} & \mathcal{F}_{img}^{back} & \mathcal{F}_{img}^{back \ left} \end{bmatrix}$$

- **Scene guidance:** text prompt-based scene guidance
- **Object guidance:**

$$z_{pano} = \text{MHCA}(z_{pano}(m_{class} = 1), \text{CLIP}(\text{class})) + \mathcal{F}_{pano}$$

## Multi-camera image editing

